WWW.PDF.KNIGI-X.RU
    -
 

. 2011. . 11, 2(53) 004.032.26-027.45 ...

. 2011. . 11, 2(53)

004.032.26-027.45

.. , ..

( )

. .

: , , , .

. () . , , , , , , , , , [1, 2].

, [3], , .



BP (backpropagation) [3].

.

. , 0 9.

1616 , , 256 , , . , 10 . , , , .

, . 16 . NNTools Matlab. . 1 2.

   

, (20-25% ).





(1), (2) , , .

. , , [1,2,7] - . , , . [8]. , , , , . : , ; ..

1. . : / . . .:

, 1992. 184 .

2. . : / . ; . . 2-e . .: , 2006. 1104 .

3. .. - / .. , .. , .. // : , . 2003. 2. . 32-37.

4. .. : . / .. , .. . .: , 1977. 222 .

5. .. . MATLAB 6 / .. , .. . .:

-, 2002. 496 .

6. .. / .. , .. // 23: . . XXIII . . .: 12 . , 2010. . 5. . 210-211.

7. . / . . .: , 2002. 344 .

8. .. / .. .: , 1969. 176 .

13.01.11.

   

References

1. Uossermen F. Neirokomp'yuternaya tehnika: teoriya i praktika / F. Uossermen. M.: Mir, 1992. 184 s. In Russian.

2. Haikin S. Neironnye seti: polnyi kurs / S. Haikin; per. s angl. 2-e izd. M.: Izdatel'skii dom Vil'yams, 2006. 1104 s. In Russian.

3. Alyautdinov M.A. Metody rasparallelivaniya i programmno-apparatnoi realizacii neiro-setevyh

algoritmov obrabotki izobrajenii / A.I. Alyautdinov, A.I. Galushkin, L.E. Nazarov // Neirokomp'yutery:

razrabotka, primenenie. 2003. 2. S. 32-37. In Russian.

4. Gorelik A.L. Metody raspoznavaniya: ucheb. posobie dlya vuzov / A.L. Gorelik, V.A. Skripkin.

M.: Vysshaya shkola, 1977. 222 s. In Russian.

5. Medvedev V.S. Neironnye seti. MATLAB 6 / V.S. Medvedev, V.G. Potemkin. M.: DIALOGMIFI, 2002. 496 s. In Russian.

6. Marshakov D.V. Ranjirovanie defektov v iskusstvennyh neironnyh setyah / D.V. Marshakov, V.A. Fathi // Matematicheskie metody v tehnike i tehnologiyah MMTT23: sb. tr. XXIII mejdunar.

nauch. konf.: v 12 t. Saratov, 2010. T. 5. S. 210-211. In Russian.

7. Osovskii S. Neironnye seti dlya obrabotki informacii / S. Osovskii. M.: Finansy i statistika, 2002. 344 s. In Russian.

8. Ushakov I.A. Metody resheniya prosteishih zadach optimal'nogo rezervirovaniya pri nalichii ogranichenii / Ushakov I.A. M.: Sovetskoe radio, 1969. 176 s. In Russian.

IMPACT OF DEFECTS ON MULTILAYER

ARTIFICIAL FEEDFORWARD NEURAL NETWORK OPERABILITY

D.V. Marshakov, V.A. Fatkhi (Power Engineering and Machinery Institute, Don State Technical University) Impact of buried layer likely defects on the performance of the multilayer feedforward artificial neural network is investigated. Dimensions of estimation of the correct network operation by pattern recognition are offered.

:

2116-2000 28 , , Meal from fish, marine mammals, crustaceous and invertebrates. Specifications 65.120 92 8200 ...

- .. , .. 2006 001.8 72.65 89 ...

( ) .. 2010 519+530.145 : ,...

05.13.11 , ...

DOCTRINE OF DOMINANT IN THE APPLICATION OF PSYCHOPHYSIOLOGICAL ASPECTS OF VIDEO INFORMATION PERCEPTION , ...

, 2010, 17, 2 536.41:669.4 * .. , .. . .. , E-mail: stankus@itp.nsc.ru ...

- 4 . . ...

4 (23), 2014 - Ż publishing@naukovedenie.ru http://naukovedenie.ru 37.013.2 ...

- Ȼ PNK GROUP BUILT-TO-SUIT , 15 2011 . Ȼ PNK Group ...








 
<<     |    
2017 www.pdf.knigi-x.ru - -

, .
, , , , 1-2 .