WWW.PDF.KNIGI-X.RU
    -
 

616-006.6:612.826.3:612.181 .. . .. , ...

" . .. ", . 26, 3-2015

616-006.6:612.826.3:612.181

..

. .. ,

:

, , , : 115478 , , 24 E-mail: vacutuchuni@mail.ru .

, 400 , .

, , . , .

, - .



, , , . .

. .

, .

. in situ , . , .

- .

, , , .

: , , , .

   

Peculiarities of vascularization of the covering epithelium in normal and cancer patients.

Study of epithelial coverings surrounding cancer focus in 400 patients with the tumors of different location revealed the existence of specific structural mechanisms, which provide the optimal level of blood supply for the various types of epithelium.

The cells of respiratory epithelium being the elements of pseudostratified coverings are directly attached to the basal membrane and have equal and ample access to the stromal blood circulation. Unlike respiratory epithelium in the squamous coverings only basal cells contact the stroma. To supply the cells of the superficial layers with nutrients the nature developed the mechanism, of penetrating of the stromal ingrowths together with blood vessels into epithelial coverings. emergence of intraepithelial blood vessels.

At the early stages of carcinogenesis- at the stages of increasing dysplasia this mechanism stops to function, epithelial-stromal frontier becomes smooth, stroma with blood vessels does not penetrate the covering epithelium and ischemia starts. Ischemia favors production of various procarcinogenetic factors.

" . .. ", . 26, 3-2015 The same sequence of events develops in the foci of metaplasia of the respiratory epithelium. Metaplastic squamous epithelium shows very low vascularization rate or is not vascularized at all.

In the process of providing the adequate blood supply the chemical properties of basal membrane plays definite role. Tinctorial peculiarities of the former differ clearly in squamous and respiratory epithelium.

The density of blood vessels determines the morphogenetic patterns of the tumors. For instance carcinoma in situ of bladder, rapidly progressing process is associated with the absence of blood vessels in the epithelial linings. Emergence of the latter favors building of papillary structures and directs the morphogenesis of more torpid nosology- exophytic, papillary carcinomas of the bladder which have more favorable prognosis.

The results of our investigations enable us to reconsider our appreciation of cancer cells. Quite possible that invasion of stroma is caused by primarily ischemia in the focus of precancerous lesion and the process of invasion compensates the lack of nutrients which follow the reduced vascularization.

Key words: carcinogenesis, ischemia and carcinogenesis, tumor angiomatosis, vascularization of the covering epithelium.

   

  . 1.

. , . 120.

. 100.

. , . , .

. . 200

   

   

   

. 4. .

, . , . .

, . , . , . , , .

" . .. ", . 26, 3-2015 . 5. . .

. .

. , -. , . .

   

1. Folkman J.Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971. Vol. 285 P. 1182 6.

2. S. Goel, D.G. Duda, L. Xu, L.L. et al.Normalization of the vasculature for treatment of cancer and other diseases //Physiol Rev, 2011. Vol. 91 P. 1071121.

" . .. ", . 26, 3-2015

3. Pircher A, Hilbe W, Heidegger I et al.Biomarkers in tumor angiogenesis and anti-angiogenic therapy. // Int.

J. Mol. Sci. 2011. Vol.1 N10 P. 707799.

4. Marn-Ramos N.I., Alonso D., Ortega-Gutierrez S. et al. New inhibitors of angiogenesis with antitumor activity in vivo. // J. Med. Che-m. 2015. Vol. 23. [Epub ahead of print]





5. de Brito-Gitirana L, Azevedo RA. Morphology of Bufo ictericus Integument. (Amphibia Bufonidae). Micron. 2005. Vol. 36 N 6. P. 5328.

6. Loo S.K., Yeo B.C., Kovac H. Endothelial cells in the oral mucosa of Bufomarinus. J. Anat. 1980 Vol. 130 N. 3 P. 55969.

7. Breipohl. W, Bhatanagar K.P., Blank M., Mendoza A.S. Intraepithelial blood vessels in the vomeronasal neuroepithelium of the rat. A light and electron microscopic study Cell Tissue Res. 1981 Vol. 215 N 3 46573.

8. Adams D.R., Ireland W.P. Structure and organization of the subepithelial microvasculature in the canine nasal mucosa. Microvasc Res. 1990 Vol.39 N. 3 P. 30714.

9. Korte G.E., Bellhorn R.W., Burns M.S. Ultrastructure of blood-retinal barrier permeability in rat phototoxic retinopathy. Invest Ophtalmol Vis. Sci. 1983. Vol. 24 N. 7 P. 96271.

10. Korte G.E., Bellhorn R.W., Burns M S. Remodelling of the retinal epithelium inresponse to intraepithelial capillaries: evidence that capillaries influence the polarity of epithelium. Cell Tissue Res. 1986 Vol.

245 N.1 P. 13542.

11. Sangari S.K., Sengupta P., Pradhan S., Khatri K. Vascularization of developing human olfactory neuroepithelium- a morphometric study. Cells Tissues Organs. 2000. Vol.166 N.4 P.34953.

12. Hashizume M, Kitano S, Sugimachi K, Sueishi K. Three dimensial view of the vascular structure of the lower esophagus in clinical portal hypertension. Hepatology. 1988 Vol. 8 N.6 P. 14827.

13. Li Q., Leopold K., Carlson J.A. Chronic vulvar purpura: persistent pigmented purpuric dermatitis (lichen aureus) of the vulva or plasma cell (Zoons) vulvitis?//J. Cutan. Pathol. 2003 Vol. 30 N.9 P. 5726.

14. Perry M.E., Kirkpatrick W.N., Happerfield L.C., Gleeson M.J. Expression of adhesion molecules on the microvasculature of the pharyngeal tonsil (adenoid). Acta Otoryngol Suppl. 1996 Vol. 523 P. 4751.

15. Seifert P, Sekundo W. Capillaries in the epithelium of pterygium. Br. J. Ophtalmol. 1998 Vol. 82 N.1 P. 7781.

16. Grosshans E., Kleinklaus I., Guillaume J.C. Intraepithelial capillary hemangioma? Ann. Dermatol.

Venereol. 2002 Vol. 129 N. 1 P. 469.

17. Jach R., Dyduch G., Radon-Pokracka R., Przybylska P., Mika M., Dulinska-Litewka J. et al. Expression of vascular endothelial growth factors VEGF-C and D, VEGFR-3 and comparison of lymphatic vessels density labeled with D2-40 antibodies as a prognostic factors in vulvar intraepithelial neoplasia (VIN) and invasive vulvar cancer. Neuro Endocrinol Lett. 2011 Vol. 32 N.4 P. 5309.

18. Cimpean AM, Mazuru V, Cernii A, Ceausu R, Saptefrati L, Cebanu A, et al. Detection of early lymphangiogenesis by lymphatic microvascular density and endothelial proloferation status in preneoplastic and neoplastic lesions of the uterine cervix. Pathol Int. 2011 Vol. 61 N.7 P.395400.

19. Heindl LM, Hofmann-Rummelt C, Adler W, Holbach LM, Naumann GO, Kruse FE, et al. Tumor-associated lymphangiogenesis in the development of con-junctival squamous cell carcinoma. Ophtalmology. 2010

Vol. 117 N. 4 P.64958.

Heindl L.M., Hofmann-Rummelt C., Adler W., Bosch J.J., Holbach LM., Naumann G.O. et al. Tumorassociated lymphangiogenesis in the development of conjunctival melanoma./ // Invest Ophtalmol Vis Sci.Vol.52- N10 P.707483.

21. Laconi E. The evolving concept of tumor microenvironments BioEssays.- 2007 Vol. 29. N.8 P.38 44.

22. Knies-Bamforth UE, Fox SB, Poulsom R, Evan GI, Harris AL. c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res. 2004 Vol.64 N.18 P. 656370.

23. Simiantonaki N., Taxeidis M., Jayasinghe C., Kurzik-Dumke U., Kirkpatrick C.J. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression. BMC Cancer. 2008

Vol. 4 N.8 P. 320.

24. Zhang X., Han S., Han H.Y., Ryu M.H., Kim K.Y., Choi E.J., et al.Risk prediction for malignant conversion of oral epithelial dysplasia by hypoxia related protein expression. // Pathology. 2013 Vol. 45 N. 5 P.

47883.

25. Hicks R.M. The fine structure of the transitional epithelium of rat ureter. J. Cell Biol. 1965 Vol. 26 N.1 P.2548.

26. Kubota Y., Kleinman H.K., Martin G.R., Lawley Th.J. Role of Laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 1988 Vol. 1097 P. 158998.



:

. . [ ] - ( ...

.. 9 2004 . 2181203 - ...

25- .. : , , .. , .. ...

14.01.12 14.01.13 , ...

14.01.18. ...

: ..., ()( ) 37.05.01 ...

mini-doctor.com 0,25 % 400 ! . 0,25 % 400 : ...










 
<<     |    
2017 www.pdf.knigi-x.ru - -

, .
, , , , 1-2 .